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CHANGE RECORD

Issue Date Section / Page Description

1.0 2015-10-28 First issue.
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4.2 Described how a write_error trap can be generated on sub-word 
writes

4.3 Updated data error trap handler example. It now uses pre-
calculated DATA/TCB combinations instead of the EDAC 
diagnostic Read Bypass functionality.

4.4 Added information on EDAC diagnostic Read Bypass
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1 INTRODUCTION

1.1 Scope of the Document

This document contains general notes on handling correctable and uncorrectable errors in 
LEON/GRLIB system-on-chip devices.

2 SYSTEM LEVEL BACKGROUND

Note that system level design and radiation effects analysis is outside the scope of IP core and 
component support. This section is only intended to provide a background to clarify the design 
intent of the IP cores.

The approach that is assumed in the LEON3FT and LEON4FT designs and components for use in 
space applications is that the system designer designs the system so that correctable (single-bit in 
the case of BCH EDAC or single-nibble in case of Reed-Solomon codes) errors in memory happen 
at a controlled rate (probability per time unit) and uncorrectablet errors happen at a very low rate 
below the acceptable failure rate for the system so that the EDAC does not need to cover it.

If the system is designed to give such guarantees, the EDAC in the LEON3FT system's memory 
controller is then used to execute correctly despite the correctable errors that occur, and scrubbing 
in software or in hardware can be designed on top of that to prevent building up multiple single-bit 
errors over time to a double error.

There will always be a remaining failure rate caused by the risk of multi-bit errors and multiple 
correctable errors accumulating to uncorrectable errors faster than the scrubbing can repair them. It 
is the system designer's responsibility to do the necessary analyses to calculate the residual failure 
rate and decide what is acceptable for the mission. 

In most cases, the system designer also adds a watchdog timer as a general safety net that resets the 
system in case of a crash. This can be due to multi bit error but also due to if there is a software bug 
that gets missed in validation or a hardware problem such as input clock glitch or power supply 
glitch. 

In most designs it's preferred to fail immediately when getting double-bit errors since you can not 
guarantee that execution will continue correctly, you want to avoid incorrect behavior (for example 
sending bad messages to other systems) and you want to reboot to get to a known good state as fast 
as possible. 
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3 SCRUBBING EXTERNAL MEMORY

3.1 Introduction

The design used in LEON3FT systems such as UT699, UT699E, UT700, LEON3-RTAX and 
GR712RC is as follows:

• When a memory controller with EDAC enabled (such as FTMCTRL) detects a correctable 
error, the data will be temporarily corrected and delivered onto the on-chip bus. However a 
sideband signal will be asserted at the same time to indicate that a read access has been 
corrected.

• This sideband signal is connected to the AHB status register, and will cause it to copy in the 
address of the access into the address register, set the New error (NE) and correctable error 
(CE) bits, and raise an interrupt. The AHB status register is typically assigned to IRQ line #1
on systems designed by Cobham Gaisler, including the UT699 - UT700 and GR712.

3.2 Baseline software approach

A general software approach would then be to add a handler for IRQ 1, that checks the AHB status 
register and performs the appropriate action such as scrubbing the location by reading and writing it
back, and then clear the AHB status register so it can latch in new errors.

To avoid cache effects on data load, one can use the load instruction with forced cache miss (LDA 
with ASI=1). The LEON3FT's cache is write through, therefore write accesses will not be affected 
by cache effects.

To make sure all data gets scrubbed regularly is is possible to have a background task with an 
address counter that reads through a bit of memory once in a while. This can just read and discard 
the data, since the IRQ handler above will take care of the actual scrubbing when needed.

Note that the AHB status register can only remember one error, so any correctable errors occurring 
before the current one has been handled (and the NE/CE bits have been cleared) will be temporarily
corrected on the fly as usual but the correction will not be registered by the AHB status register and 
therefore not be corrected by the scrubbing scheme routine. Once the AHB status register is idle and
someone reads again from this location, the correctable error will be discovered and handled.

DMA will complicate the issue, as the read/write sequence in the IRQ handler may get into a "race" 
with a DMA master writing to that same location. One will have to do some analysis to see if this 
can happen in the specific setup. Note that many times memory accessed via DMA will just be 
read/written once so that fact can be used in the analysis (for example you may find that areas 
accessed by DMA never need scrubbing).
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3.3 Hardware offloaded scrubbing

Newer systems, such as the GR740 device or other devices that include the MEMSCRUB 
peripheral from Cobham Gaisler have a hardware memory scrubber. The MEMSCRUB IP cores 
provides periodic scrubbing of external memory. It uses a generic approach compatible with any 
memory controller with AHB interface and EDAC, designed in the way described in section 3.1. 
When the scrubber  finds a correctable error, it will used a locked read/write cycle to perform the 
scrub operation, thus avoiding any possible race with DMA units or other masters.

The MEMSCRUB also includes all the AHB status register functionality and has a backward 
compatible software interface, therefore it can also be also be used with existing software scrubbing
routines.

For more information on MEMSCRUB, please see the GRLIB IP Core User's Manual. 

3.4 Additional considerations

In addition to the general notes in the previous section, the following items should be considered:

• In systems with a memory protection unit it may be required to check that the memory is 
writable.

• For uncorrectable errors (ERROR responses), software needs to check that the memory 
address is on the memory controller. The AHB (bus) controller in GRLIB replies with 
ERROR if an unmapped memory area is accessed.

• Always check that correctable error is in RAM before trying to correct

4 HANDLING UNCORRECTABLE ERRORS

4.1 Background

LEON/GRLIB systems such as UT699, UT699E, UT700, LEON3-RTAX, GR712RC and GR740 
have the option to protect memory areas with error detection and correction (EDAC). When EDAC 
corrects an error in memory then a side-band signal will be raised and software will typically be 
notified about this through the AHB status register. How to use this functionality to implement 
memory scrubbing in order to prevent build up of errors is described in section 3 of this document.

When a memory controller detects an uncorrectable error it will respond with an AMBA ERROR 
response. An AMBA ERROR response will have the following effects:

• If the design has an AHB status register (present in all Cobham Gaisler LEON ASIC 
devices) then the error response will cause it to copy in the address of the access into the 
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address register, set the New error (NE) bit, and raise an interrupt. The AHB status register 
is typically assigned to IRQ line #1 on systems designed by Cobham Gaisler, including the 
UT699 - UT700 and GR712.

• If the processor is the AMBA master that initiated the transfer causing the AMBA ERROR 
response, then a trap will be generated.

• If the AMBA ERROR response is triggered by a peripheral capable of direct-memory 
access, such as a SpaceWire or Ethernet controller, then the peripheral will typically stop 
with an error condition being signalled through its status register and interrupt.

Uncorrectable errors and subsequent AMBA ERROR responses are a critical condition that is 
expected to be rare. By default the operating systems and run time environments distributed by 
Cobham Gaisler do not contain handlers for the traps caused by AMBA ERROR responses. This 
means that the processor will stop and enter error mode upon receiving an AMBA ERROR 
response. The watchdog timer will then time out and the system will be reset.

Some applications may want to handle uncorrectable errors by trying to mitigate them, shut down 
the affected software task, or try to log the occurrence of the uncorrectable error before performing 
a reset of the device.

4.2 LEON Processor Behaviour on Uncorrectable Errors

When a LEON processor receives an AMBA ERROR response for a memory location that the 
processor will use, one of the following conditions will happen:

• An AHB ERROR response received while fetching instructions will normally cause an 
instruction access exception (tt=0x1). However if this occurs during streaming on an address
which is not needed, the I cache controller will just not set the corresponding valid bit in the 
cache tag. If the IU later fetches an instruction from the failed address, a cache miss will 
occur, triggering a new access to the failed address.

• An AHB ERROR response while fetching data into the data cache will normally trigger a 
data_access_exception trap (tt=0x9). If the error was for a part of the cache line other than 
what was currently being requested by the pipeline, a trap is not generated and the valid bit 
for that line is not set. A write_error trap (tt=0x2B) can be generated on sub-word writes that
cause a read-modify-write cycle, where the EDAC error occurs on the read.

• An ERROR response during an MMU table walk will lead the MMU to set the fault type to 
Internal error (1) and generate an instruction or data access exception, depending on which 
type of access that caused the table walk.

Note that the default behaviour of the GRMON2 debug monitor is to break on these traps. If you are
connected to the system with GRMON2 when an AMBA ERROR response is received by the 
processor then GRMON2 will break execution on the above traps. This can be prevented by starting
GRMON2 with the flag -nb.
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4.3 Data Trap Handler

In Cobham Gaisler BCC version 2, trap handlers can be installed with the bcc_set_trap() function. 
The listing below show an example that installs a trap handler and generates correctable and 
uncorrectable errors in a system with the FTMCTRL memory controller and AHB status register 
peripheral.

== main.c start ==
/*
 * This is an example on how the processor inject test check bit errors with
 * the FTMCTRL. A trap handler is registered for the dat access exception trap.
 * RAM accesses are performed to demonstrate how the AHBSTATUS and LEON trap
 * mechanism responds. 0, 1 and 2 BCH check bit errors are injected.
 *
 * USAGE:
 * Set the defines FTMCTRL_REGS and AHBSTAT_REGS to match your system.
 *   $ make
 *   $ grmon <dbglink> -u -edac -nb
 *   grmon2> wash
 *   grmon2> load bchexample.elf
 *   grmon2> run
 *
 * For more information, see Cobham Gaisler Application note GRLIB-AN-0004.
 */
#include <stdint.h>
#include <stdio.h>
#include <bcc/bcc.h>
  
#define FTMCTRL_REGS    0x80000000
#define AHBSTAT_REGS    0x80000f00
#define FTMCTRL_MCFG3_WB        (0x01 << 11)
#define FTMCTRL_MCFG3_TCB       (0xff <<  0)
struct ftmctrl_regs { unsigned int mcfg1, mcfg2, mcfg3, mcfg4; };
struct ahbstat_regs { unsigned int status, faddr; };
volatile struct ftmctrl_regs *mctrl     = (void *) FTMCTRL_REGS;
volatile struct ahbstat_regs *ahbstat   = (void *) AHBSTAT_REGS;

static const int TT_DATA_ACCESS_EXCEPTION = 0x09;
extern void tt_0x09(void);

/* VAL_DATA_A => BCH TCB = 0, VAL_DATA_B => BCH TCB = 0x7f */
static const unsigned int BCH_VAL_DATA_A = 0x00000028;
static const unsigned int BCH_VAL_DATA_B = 0x0001012c;

void write_data_and_tcb(volatile unsigned int *addr, uint32_t val, uint32_t tcb)
{
  uint32_t mcfg3 = mctrl->mcfg3;

  mcfg3 &= ~FTMCTRL_MCFG3_TCB;
  mcfg3 |= FTMCTRL_MCFG3_WB;
  mcfg3 |= tcb & FTMCTRL_MCFG3_TCB;
  mctrl->mcfg3 = mcfg3;
  *addr = val;
  mctrl->mcfg3 = mcfg3 & ~FTMCTRL_MCFG3_WB;
}

volatile unsigned int a = 1; 
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int main(void)
{
  bcc_set_trap(TT_DATA_ACCESS_EXCEPTION, tt_0x09);
  printf("a is a test word at RAM address %p\n\n", &a);
  static const uint32_t TCBS[3] = { 0x00, 0x01, 0x03 };
  for (int i = 0; i < 3; i++) {
    unsigned int readval; 

    printf("TEST %d\n", i);
    printf("  Clear AHBSTAT\n");
    ahbstat->status = 0;

    printf("  Write a := %08x with %d TCB bit errors.\n", BCH_VAL_DATA_A, i);
    write_data_and_tcb(&a, BCH_VAL_DATA_A, TCBS[i]);
  
    readval = bcc_loadnocache((uint32_t *) &a);
    printf("  Read  a -> %08x\n", readval);
    printf("  Read  ahbstat -> (status=%08x, faddr=%08x)\n\n",
      ahbstat->status, ahbstat->faddr);
  }
  return 0;
}

== main.c end ==

© Cobham Gaisler AB
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The following code contains the example trap handler:

== tt_0x09.s start ==
/*
 * Demonstration trap handler for 'data access exception'. It writes the
 * failing location with a magic value.
 *
 * Assumes ahbstat contains address of AHBSTAT device to use.
 *
 * NOTE: This is code is for demonstration of the AHBSTAT/FTMCTRL diagnostic
 * interface.
 *
 * Registers at trap entry: l0=psr, l1=pc, l2=npc, l6=tt
 */
        .section ".text"
        .global tt_0x09
tt_0x09:
        /* Find AHBSTAT */
        set     ahbstat, %l3
        ld      [%l3], %l3
        /* Get failing address from AHBSTAT. */
        ld      [%l3 + 4], %l4
        /* Write a magic number to failing location. */
        set     0xDEADBEEF, %l5
        st      %l5, [%l4]
        /* Clear AHBSTAT and re-activate monitoring */
        st      %g0, [%l3]
        /* Re-execute trapped instruction. */
        jmp     %l1
         rett   %l2

== tt_0x09.s end ==

The following Makefile can be used to build the application:

== Makefile start ==
# Use BCC 2.0.1 or later to compile this example
CC      = sparc-gaisler-elf-gcc
CFLAGS  = -O2 -std=c99
PROG    = bchexample.elf
$(PROG): main.c tt_0x09.s
        $(CC) $(CFLAGS) main.c tt_0x09.s -o $@
clean:
        rm -f $(PROG)

== Makefile end ==

When putting the above files in one directory and issuing make with the BCC sparc-gaisler-elf-gcc 
compiler in the $PATH, the resulting bchexample.elf binary will demonstrate generation and 
handling of uncorrectable errors.

© Cobham Gaisler AB
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Following is the output when running the example on a GR712RC development board:

== Output start ==
grmon2> run
a is a test word at RAM address 0x40010744
    
TEST 0
  Clear AHBSTAT
  Write a := 00000028 with 0 TCB bit errors.
  Read  a -> 00000028
  Read  ahbstat -> (status=00000002, faddr=80000f04)

TEST 1
  Clear AHBSTAT
  Write a := 00000028 with 1 TCB bit errors.
  Read  a -> 00000028
  Read  ahbstat -> (status=00000302, faddr=40010744)

TEST 2
  Clear AHBSTAT
  Write a := 00000028 with 2 TCB bit errors.
  Read  a -> deadbeef
  Read  ahbstat -> (status=00000002, faddr=80000f04)

  CPU 0:  Program exited normally.
  CPU 1:  Power down mode
  
grmon2>

== Output end ==

When 1 TCB error injected, then the trap handler will not be engaged and the AHBSTATUS 
registers a correctable error. When 2 TCB errors are injected, then the trap handler will rewrite the 
failing location with a magic value and restart the AHB Status Register monitoring.

Starting GRMON without the -nb option will make the program abort instead of executing the data 
access exception trap.

4.4 Additional considerations

In addition to the notes in the previous sections, the following items should be considered:

• For uncorrectable errors (ERROR responses), software needs to check that the memory 
address is on the memory controller. The AHB (bus) controller in GRLIB replies with 
ERROR if an unmapped memory area is accessed.

• The trap may not be related to the currently executing instruction.
• The location of uncorrectable error may itself used by the error handling routine (for 

example a counter variable, or even the instructions performing the handling).
• There may be more than one uncorrectable error.
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• There is no way for software to recover from uncorrectable error in the general case, except 
from restarting the system.

• When the FTMCTRL EDAC diagnostic Read Bypass is activated, then any memory read 
accesses will cause MCFG3.TCB to be updated. This includes instruction fetches made by 
the CPU instruction cache, CPU data cache and other DMA devices.

• The FTMCTRL EDAC diagnostic Read Bypass functionality requires that EDAC is 
enabled.
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Information furnished by Cobham Gaisler is believed to be accurate and reliable. However, no 
responsibility is assumed by Cobham Gaisler for its use, or for any infringements of patents or other
rights of third parties which may result from its use. No license is granted by implication or 
otherwise under any patent or patent rights of Cobham Gaisler. 

All information is provided as is. There is no warranty that it is correct or suitable for any purpose, 
neither implicit nor explicit.
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